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This paper documents a fast-time simulation study for the NextGen Conflict Resolution 

Advisories (CRA) project that investigates the benefits of improved controller intent entry. 

CRA facilitates the entry of full 2-part amendments, and the use of these “closed clearances” 

will increase the level of future controller intent that is known to the ground automation 

system. The study employs experimental design techniques to plan and synthesize the results 

of 50 simulation runs that use the CRA prototype software in an En Route Automation 

Modernization (ERAM)-like modeling environment. Several factors are examined, including 

forecasted traffic demand from years 2018 and 2025, five airspace centers, and a parameter 

to reflect the level of intent entry to the ground automation system. These years are chosen 

because they represent the mid- and far-term time frame for NextGen, and five centers are 

selected to reflect the breadth of traffic characteristics in the National Airspace System. 

Metrics of interest in this study reflect trajectory prediction accuracy and conflict probe 

alert performance, both of which the FAA’s Concept Analysis Branch (ANG-C41) Conflict 

Probe Assessment Team has considerable experience in evaluating. Analysis results on the 

effects of intent entry are presented in detail. 

I. Introduction 

N advanced separation management function called Conflict Resolution Advisories (CRA) is a crucial piece of 

the planned implementation of the Federal Aviation Administration’s (FAA) Next Generation Air 

Transportation System (NextGen). CRA belongs to the NextGen Trajectory Based Operations (TBO) Solution Set. 

TBO is an integral part of NextGen and represents a paradigm shift from today’s predominantly tactical air traffic 

control toward strategic trajectory-based air traffic control that utilizes an unambiguous path in space and time. CRA 

is an advanced decision support tool (DST) designed to aid air traffic controllers in maintaining safe separation of 

air traffic and formulating efficient resolution maneuvers. It is ground-based and will be implemented in the En 

Route Automation Modernization (ERAM) system. CRA uses ERAM’s conflict probe algorithm to detect potential 

separation violations, and provides a rank-ordered listing of potential conflict resolution maneuvers. The resolutions 

are presented to the controller via advanced menus accessible from the flight data block on the radar console. CRA 

allows the controller to easily insert their selected resolution into the ground automation system, and is expected to 

improve operational efficiencies as well as increase the use of “closed-loop” clearances where future controller 

intent is fully known to the ground automation system. 

In the current system, a controller’s conflict resolutions are frequently issued via voice and are often unknown to 

the ground automation system.  In addition, the ground automation may be furnished with the first part of a 

maneuver but lack information about future components of the controller’s intended maneuver. This benefit analysis 

study compares the current procedures for resolving aircraft to aircraft conflicts with procedures envisioned for 

future use. These future procedures will make it easier for controllers to issue clearances that contribute to a “closed-

loop” system in which the ground automation system is provided with future intent and can in turn generate more 

accurate conflict probe results and recommended resolutions. This is contrasted to “open-loop” clearances issued 

today that may or may not be entered into the automation, and even when entered, do not include later maneuver 

components. 
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A key benefit of CRA is that it facilitates the entry of full 2-part amendments (e.g., including the second part of a 

2-leg lateral maneuver or next altitude transition point). The authors hypothesize that improved intent entry leads to 

improved performance of the ground automation with respect to trajectory modeling and conflict alert generation. 

This paper documents a study testing this hypothesis in support of the cost benefit case for CRA. The second major 

fast-time simulation study for the CRA project, it uses the Java En Route Development Initiative (JEDI) modeling 

environment and Problem Analysis Resolution and Ranking (PARR) software. PARR is the CRA prototype 

software developed by the MITRE Corporation’s Center for Advanced Aviation System Development and has been 

assessed in several experiments with Certified Professional Controllers (CPC) from across the country. An FAA 

technical note
12

 documents the entire study, and the project plan is presented in Ref. 11. 

A. Benefit from Improved Intent Entry 

The study uses a fast-time simulation tool to investigate the benefit identified in Ref. 3 as B2: Reduced 

maneuvering due to improved intent entry, one of seven anticipated benefits from implementing CRA. The benefit 

definition is expanded to include improvements in trajectory modeling and conflict probe alert performance. The 

benefit from improved intent entry is associated with the use of 2-part maneuvers. CRA menus support the entry of 

2-part step climbs and descents and 2-leg lateral maneuvers, and it is anticipated that the introduction of CRA will 

increase the frequency and accuracy of controller intent entry for these types of resolutions.  

When controllers issue off-route headings without amending an aircraft’s flight plan, this leaves the automation 

with no information on the controller’s intent to return the aircraft to route; the trajectory modeler must assume a 

future maneuver turn point
5
. Similarly, controllers may issue temporary altitudes during climbs or descents and even 

though the temporary altitude may be entered into the automation, the intention of the controller regarding planned 

resumption of the climb or descent is not.  As a result, the expected dwell time at the temporary altitude must be 

assumed by the trajectory modeler. In cases such as these where future intent is not entered, the presumed flight path 

in the ground automation has limited accuracy. The trajectories generated without the benefit of correct intent have 

increased potential for prediction errors, false and missed alerts, alert instability, and increased controller workload. 

CRA will reduce the entry of open clearances such as temporary altitudes and off-route headings in favor of full 

2-part clearance entry. When a 2-part maneuver is selected and issued to an aircraft from a CRA menu, the entire 

maneuver is included as a change to the known intended flight path in the ground automation. This updated intent 

information is incorporated in trajectory predictions used for conflict detection. This “improved intent entry” to the 

ground automation is anticipated to have a positive impact by reducing trajectory modeling error and the number of 

re-conformances, as well as improving the performance of conflict probe alerts in terms of false alerts, late alerts, 

and other qualities that affect controller workload. 

A qualitative assessment of the benefit from CRA related to improved intent entry is detailed in a report by Kuo 

and Idris
7
. The report notes that “the un-ambiguous identification of aircraft intent is essential for accurate trajectory 

predictions, thereby allowing accurate and reliable alerting decisions at the conflict detection and resolution stages.” 

To support this idea, Kuo and Idris present various air traffic scenarios to demonstrate how improved intent entry in 

CRA can result in safety benefits. This is accomplished by constructing benefit mechanisms that connect intent entry 

to operational errors. The simulation study provides flight data to illustrate these safety mechanisms. However, it 

also provides output data that will quantify the potential improvement to the trajectory and conflict probe predictions 

resulting from the capture of the additional intent that the CRA tool provides to the ERAM automation. 

II. Study Approach  

The objective of this study is to quantify the benefit to the ground automation when it is provided with the 

complete intended flight path for an entire maneuver when issuing 2-part maneuvers and to test the significance of 

any impact. To this end, the simulation and analysis is designed to determine if the automation’s performance 

improves or degrades with increased entry of controller intent. Specific levels of intent entry are modeled by 

randomly withholding (to the desired degree) full amendment clearance information from the ground automation; 

this methodology is detailed in Section II.B. The null hypothesis to test the impact of increased levels of intent entry 

in this study is stated as follows: 
Regardless of en route air traffic control center and future forecasted traffic level, increasing the percent of amendment 

clearances provided to the ground automation (i.e. intent level) does not yield improved performance metrics.  
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If the null hypothesis can be rejected with a high level of confidence, this 

strongly implies that there is a positive impact from increasing intent levels, as 

stated by the alternative hypothesis: 
Increasing the percent of amendment clearances provided to the ground 

automation does improve the performance, as indicated by the same metrics, at 

different en route centers and forecasted traffic levels. 

The metrics used in the analysis to capture performance are related to trajectory 

and conflict probe accuracy and are discussed in detail in Section II.C. The 

effect of the intent level was quantified using controlled experimentation 

techniques based on experimental design principles. The data required to assess 

these benefits was gathered using a fast-time simulation of the NAS. The NAS 

simulation was considered as a process, with input including an air traffic 

scenario and various controllable and uncontrollable factors, and with output 

consisting of the trajectory and conflict probe performance. Controllable 

factors are the year, the airspace, and the intent level, described in the 

following section.  
The overall approach used in the study is as follows. The controllable 

factors are combined as indicated in the experimental design to produce 

simulation runs with various levels of each factor. Each experimental run uses 

a scenario file that contains one flight plan for every aircraft in that scenario. 

This flight plan file is passed to the fast-time simulation along with a specified 

intent level and other simulation-related settings. The output data from the 

simulation contains track data, clearance amendments, trajectories, and conflict 

probe alerts and is assumed to represent how the automation system would 

have behaved with that particular set of flight plans and the specified level of 

intent entry. Finally, this data is analyzed using specialized tools in order to 

evaluate the impact of the various factors. 

Figure 1 depicts the study process. The data, represented by rectangles, consists of input flight scenario files, 

simulation settings, output data, and analysis results. The processes, represented by ellipses, are the fast-time 

simulation and analysis of data. 

A. Experimental Factors and Design 

Three controllable factors are considered in this study. The level of intent entry to the ground automation is the 

main factor of interest. Traffic density is a second experimental factor, which is represented by the year for which a 

traffic scenario is forecast. Finally, differences in air traffic characteristics between Air Route Traffic Control 

Centers (ARTCCs) may affect the performance of the ground automation, so several different centers are selected to 

determine how the effect from CRA may vary. The three controllable factors- percent of clearances fully entered 

(intent parameter), year, and ARTCC -are discussed in the following sub-sections. The combination of these factors 

in an experimental design is discussed in the last sub-section. 

 

1. Intent Entry 

As mentioned in the previous section, a reduction in the intent that is available to the ground automation is 

modeled by missing or incomplete amendment clearances. The experimental factor that represents the level of intent 

entry in the simulation is the percent of 2-part clearances that are fully entered, where the largest percent reflects the 

highest level of intent entry. Further information about the implementation of this factor is given in Section II.B. The 

model presented in this study allows estimation of the effect at any percent of full 2-part clearance intent entry. 

Five levels of this factor will be used in this experiment, making it possible to model intent as a continuous 

factor. The levels of intent entry to the ground automation system are listed below, along with the 2-letter codes that 

are used to identify the intent parameter level in each run. Here, “clearances” refers to a full 2-part resolution 

maneuver. 

� Full (FL), 100% of clearances entered 

� High (HI), 75% of clearances entered 

� Medium (MD), 50% of clearances entered 

� Low (LO), 25% of clearances entered 

� None (NN), no clearances entered 
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Figure 1. Study Process Flow. 
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2. Traffic Density 

Increasing levels of traffic density are simulated by using forecast traffic scenarios. The air traffic scenarios used 

in this study were flight plan files based on the AJG Forecast Schedules, derived from 2010 traffic levels. This study 

used two 24-hour scenarios: the AJG 2018 Forecast Schedule and the AJG 2025 Forecast Schedule. These years are 

chosen because they represent the mid- and far-term time frame for NextGen. 

 

3. ARTCC 

This study deals with conflicts identified in five ARTCCs. The five centers are selected based on operational 

characteristics, with the goal of selecting center facilities with different characteristics, thus representing a wide 

range of air traffic operations and automation performance. To aid in this selection, an analysis is performed to 

categorize all 20 Continental United States (CONUS) ARTCCs based on metrics for conflict probe and trajectory 

modeling performance and to define groups of centers with similar characteristics using statistical cluster analysis. 

To provide data for the cluster analysis, a fast-time simulation is run for the 20 CONUS ARTCCs using 

historical track data that has been time-shifted to induce realistic conflict events. This time-shifting method has been 

used in previous studies
10

 as a way to test the performance of trajectory modeling and conflict prediction under 

circumstances that closely resemble what the automation system would encounter in operation. The resulting data is 

analyzed to produce conflict probe and trajectory performance metrics and the cluster analysis technique is applied 

to the data. Cluster analysis seeks to define similar groups of entities based on their characteristics. In this analysis, 

Ward’s clustering method is performed in JMP® using the following metrics: missed alert rate, false alert rate, 

average absolute cross track error, average absolute along track error, and average absolute vertical error. These 

metrics are discussed in more detail in Section II.C and in Ref. 2. Each of the trajectory error metrics was calculated 

at 5 minute and 15 minute look ahead times. Five clusters are defined as a result of the analysis, and one ARTCC is 

selected from each cluster to provide a wide representation of trajectory modeling and conflict probe performance. 

The five centers chosen for simulation are: Chicago (ZAU), Denver (ZDV), Miami (ZMA), Los Angeles (ZLA), and 

New York (ZNY). These centers are highlighted in Figure 2. 

 

 

Figure 2. Air Route Traffic Control Centers. 
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4. Experimental Design 

The levels used for each factor are: two forecast years, five ARTCCs, and five levels of intent entry. As listed in 

Table 1, forecast year was modeled at 2018 and 2025 traffic levels. The five ARTCCs chosen are: ZAU, ZDV, ZLA, 

ZMA, and ZNY. The intent parameter has 5 levels, as outlined previously. The combination of these factors at all 

levels produces a total of 50 possible experimental runs to study. 

 

Table 1. Summary of Experiment Factors and Levels. 

Factor 
Description of  

Levels 

Number of 

Levels 

Intent Entry FL, HI, MD, LO,NN 5 

Traffic Density (Year) 2018 and 2025 2 

ARTCC ZAU, ZDV, ZLA, ZMA, ZNY 5 

Total Runs = 50 

 

Since it is a fast time simulation study, the marginal cost associated with performing individual runs is relatively 

low. A full factorial design is executed, which includes runs that cover all possible combinations of factor levels. 

Full factorial designs reveal any interaction effects of the factors under study. A model will be applied to the 

responses from the 50 simulation runs to determine the effect of each factor. 

B. Fast-Time Simulation 

Fast-time simulation is used to generate track data for input flight plans, perform trajectory modeling and 

conflict detection, simulate CRA amendments, and output scenarios reflecting different levels of intent entry. This 

process is described in detail in Section 3.1 of Ref. 5 and summarized here. The fast-time simulation framework uses 

MITRE’s Java En Route Development Initiative (JEDI) because it has trajectory modeling and conflict detection 

with functional performance similar to ERAM
6
, which is currently being deployed and will be the operational 

system in all facilities.  

The process starts with an input file containing one flight plan for each aircraft, from which track data is 

generated using a track simulator. Any predicted loss of separation between flights detected in this track data is 

resolved using a MITRE-CAASD problem resolution prototype named Problem Analysis Resolution and Ranking 

(PARR), a prototype of CRA. The resolution of notified conflicts (alerts) by PARR is invoked on a one minute 

cycle. For each notified conflict the highest ranked resolution is chosen and sent to the track simulator, which then 

simulates track data that follows the resolution.  

In the full intent scenarios, the resolution amendments are also sent to the Flight Manager in JEDI for modeling. 

However, in a reduced intent scenario, some of this resolution information is withheld from the Flight Manager, 

depending on the specified intent level. This difference in information is what distinguishes the intent parameter, 

and it is implemented based on the factor level. For instance, at the NN or “no intent” level, the track simulator 

receives full two-part altitude and lateral amendments, while Flight Manager receives only interim altitudes for 

vertical resolution amendments, and no information at all for two-part lateral resolution amendments. At the MD or 

“medium intent” level, these types of resolutions have a 50% chance of being sent to the Flight Manager. Cases 

where Flight Manager receives missing or incomplete intent information are referred to as reduced intent 

amendments. 

Alerts for which a resolution is sent to the track simulator are not resolved in future resolution cycles because 

any implemented resolution is assumed to be following a green, or conflict free, flight plan. Within JEDI a Trial 

Plan trajectory is used to evaluate whether a resolution path is conflict free, and the Current Plan trajectory is used 

by the conflict probe. For this experiment, Trial Plan conflict detection is set at a 12 minute look ahead, which 

effectively ensures that any proposed resolution path will be conflict free for at least 12 minutes. The Current Plan 

look ahead determines how far along the current flight path the conflict probe is applied and is set to 10 minutes, 

with resulting alert notification time between 4 and 10 minutes based on conflict likelihood. 

ANG-C41 created the input flight plan scenarios for this study by using the FAA’s Forecast Analysis Group 

(AJR-G1) Forecast Schedules. These estimate future air traffic demand and are 24-hour scenarios representing air 

traffic over the entire NAS, including international flights. The forecast schedules were used as a basis for air traffic 

scenarios representing potential flight traffic in the years 2018 and 2025. The scenario input files are generated using 

established tools, including the ATOPScheduleConverter, from the Conflict Probe Assessment Team (CPAT) within 
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ANG-C41. To limit each scenario to a specific ARTCC, air traffic was filtered to include only those flights traveling 

through some part of the ARTCC. In addition, recorded flight data was analyzed to calculate a representative 

distribution of aircraft equipage codes by aircraft type which was then assigned to the flight plans. 

Table 2 provides a summary of the traffic counts in each of the runs for the five centers. The number of flights in 

each scenario output from the fast-time simulation is slightly less than the input number due to flights not reaching 

the center airspace before the end of the scenario and other simulation issues. These final counts are presented on the 

right hand side of Table 2. 

Table 2. Number of Flights. 

 Input Flight Plans Simulation Output 

 2018 2025 2018 2025 

ZAU 4931 5695 4462 5126 

ZDV 3714 4326 3343 3879 

ZLA 4183 4868 3795 4393 

ZMA 4675 5587 4052 4790 

ZNY 6532 7494 5204 5864 

Total 24035 27970 20856 24052 

 

There are 10 unique input files, which account for five different ARTCCs and two levels of traffic density. The 

remaining factor, intent level, was implemented as a simulation input parameter as discussed above. 

C. Analysis Tools 
Metrics to compare the proposed environment to the current environment are needed in order to quantify the 

benefit of the proposed changes. Existing tools from CPAT will be utilized in this analysis as detailed in the 

following sub-sections. 

 

1. Trajectory Modeling Analysis 

The output simulation data includes predictive trajectories generated by JEDI’s trajectory modeling and used by 

the conflict probe in detection. When a reduced intent amendment is issued, the trajectory modeling system lacks the 

necessary information to update the cleared flight plan and build an accurate long-term trajectory. The result of this 

is that the flight’s actual path will deviate from the known route and a new trajectory must be built. In a reduced 

intent scenario, the trajectory reconformance algorithm uses default parameters to estimate the turn point or altitude 

transition point of an aircraft in the case of a two-leg vector or step altitude maneuver, respectively. It is anticipated 

that in the reduced intent scenarios new trajectories will be generated more frequently, which will increase trajectory 

instability and degrade the performance of the conflict probe.  

To quantify this change, the number of unique trajectories built by the automation for each unique aircraft 

identification (ACID) is recorded. Another count is made which identifies a specific subset of these trajectories. 

Every time an amendment is entered, a new trajectory is generated. To focus on trajectories that were built for other 

reasons, amendments are matched to trajectories by ACID and time (within one second) to identify cases other than 

when a trajectory is built following an amendment. 

It is anticipated that reduced intent amendments may negatively affect the accuracy of the predicted trajectories, 

which also contributes to degraded conflict probe performance. Trajectory error metrics have been applied in 

previous studies to provide a method to measure the accuracy of trajectories in multiple dimensions with respect to 

actual flight position. This provides a means of quantifying the effects of improved intent. Sampling methods and 

definitions of these metrics are presented in Ref. 2 and summarized here briefly. The Interval Based Sampling 

Technique (IBST) is a method developed by ANG-C41 for evaluating trajectory accuracy. It has been previously 

documented in Ref. 9 and has been applied in a number of FAA studies and test programs. IBST pairs track and 

trajectory points to measure prediction error at various times along a flight’s track and at varying look ahead times 

into the future. 

The four basic metrics used are horizontal error, vertical error, along track error, and cross track error. Horizontal 

error is the time coincident difference in nautical miles (NM) between the predicted position on the trajectory and 

the actual position calculated from surveillance radar reports. Cross track error (NM) is the perpendicular distance 

between the actual position of an aircraft and its projection onto the trajectory. Along track error (NM) is the 

longitudinal distance along the trajectory between the same projection and the time coincident predicted position of 
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the aircraft. The vertical error is the altitude difference in feet between the predicted trajectory position and the time 

coincident actual position. For further details on these definitions and how they are calculated see Ref. 9. 

Following these definitions, horizontal error is unsigned while the other three are signed. For most analyses 

involving these metrics, it is desirable to consider absolute values because the distance from zero is of interest. 

Therefore the absolute value is taken before calculating average values. Finally, the average metrics comprise only 

relevant data points by considering error values for trajectory points where a clearance or route amendment has not 

been received within a specified time period (as that may have altered the trajectory) and the flight remains within 

control of the center. 

CPAT tools are used to parse trajectory information from the JEDI output data into a database format. The 

information is then processed to count the total unique trajectories and unique trajectories that are not matched to a 

clearance amendment. Finally, the CPAT tool TrajectorySampler samples the trajectory error using IBST. 

 

2. Conflict Probe Alert Analysis 

The flight traffic in these scenarios has been processed through conflict detection, and resolution maneuvers 

have been implemented. As a result, there is no guaranteed way to determine from the available data whether the 

potential loss of separation for which an alert is generated would actually have materialized, or how close it would 

have been without action from air traffic control (ATC). Therefore, this study will not analyze the performance of 

generated alerts in terms of traditional accuracy (e.g., false alerts and missed alerts). Traditional conflict prediction 

metrics or a version of such will be left for future study. Instead the focus of this analysis is on the notification sets 

and alert-related metrics such as alert counts, duration, and predicted warning time. 

CPAT tools are used to analyze the alert information output from the simulation runs to identify distinct alert 

notifications using rules specified in Ref. 2. The count of distinct alert notifications is compared across the scenarios 

and used as a response variable in the statistical model.  

The duration of each alert notification is calculated as the difference between the latest alert deletion time and 

the earliest alert add time in a given set. It is expected that in cases of reduced intent amendments as mentioned in 

Section II.B, alerts will not be removed upon resolution. Since the resolution algorithm attempts to resolve conflicts 

every minute, alert durations greater than 1 minute are indicators of problematic alerts.  

The predicted warning time provided by an alert is calculated as the notification start time subtracted from the 

predicted conflict start time. The distribution of warning times is analyzed across the various scenarios. A shift in 

the warning time distribution may indicate a degradation in conflict probe performance. Therefore the 25
th

 

percentile, or first quartile (Q1), of the alerts’ predicted warning times is calculated as a metric of interest in tracking 

the conflict probe performance. 

III. Analysis and Results 

The results of the experiment are presented in three sections. First, the performance of the trajectory modeling is 

analyzed in terms of the accuracy of the predicted trajectory positions and the number of trajectory rebuilds that are 

generated during the simulation. General descriptive statistics are provided in addition to testing for statistical 

differences between treatment scenarios. Next, Section III.B investigates the performance of the conflict probe and 

specifically, the alerts generated by the simulated automation system that would have been shown to controllers 

interacting with the system tool. Metrics from each of these first two sections are selected as response variables in a 

statistical model in Section III.C, which discusses how the model is fit to the experiment data to determine the 

effects of the different factors and their interactions.  

A. Trajectory Modeling Performance 

The following two subsections provide a descriptive and inferential statistical analysis of the trajectory modeling 

in the simulated data. The accuracy and stability of predicted trajectories are key to the overall performance of the 

ERAM system and conflict probe. 

 

1. Counts of Trajectories 

As stated in Section II.C.1, new trajectories are built when aircraft track data do not adhere to the known route. 

The trajectory reconformance algorithm is forced to guess a turn point or altitude transition to rejoin the known 

route and this is likely to result in trajectories with poor prediction accuracy and, in turn, further trajectory rebuilds. 

It is expected that reduced intent scenarios will result in more frequent deviations from the known route and more 

frequent generation of new trajectories. The number of trajectories generated per ACID is analyzed to quantify the 

effect of improved intent. 
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The number of unique trajectories, distinguished by the trajectory build time, is recorded for each flight in a 

scenario. These counts are averaged over all of the flights in a scenario, and the average (per flight) values are 

presented in the technical note. There are clear trends in the data of count values decreasing with improved intent 

entry. To verify that this effect is significant, a statistical test is applied to the data. Each of the four reduced intent 

scenarios is considered as a treatment run and compared against the full intent scenario (FL, or 100% of clearances 

entered into automation) using a paired t-test. The same flights are present in all five scenarios for a specified Year 

and ARTCC, so the trajectory count for each flight in a treatment run is compared to the trajectory count for the 

same flight in the full intent run. The paired t-test examines the distribution of differences in counts between the two 

scenarios, and tests if the mean of the differences is statistically different from zero. One paired t-test is done for 

each of the four reduced intent scenarios in a given ARTCC and Year, for a total of 40 tests. The same conclusion is 

reached in all, that the trajectory counts are lower overall in the full intent scenario than in the reduced intent 

scenarios. This difference is statistically significant in all comparisons, with all p-values less than 10
-4

. The full 

technical note appendices contain the difference in means and Student’s paired t-statistic for each comparison. 

It is expected that with decreasing intent levels, more clearance amendments are entered and therefore more 

trajectories are generated. This effect is captured by a second trajectory count metric, which focuses on the 

generation of additional trajectories. As explained in Section II.C.1, entered amendments are matched to generated 

trajectories with the same ACID and occurring within one second, and the trajectories that are not matched to a 

clearance are counted. This represents how many “extra” trajectories are generated in a scenario. The counts are 

averaged over all of the flights in a scenario, and again there are clear trends of count values decreasing with 

improved intent. Similar to the analysis for total trajectory count, a paired t-test is applied to the data to verify that 

the effect is significant. Comparing each reduced intent scenario to the corresponding full intent scenario, the 

difference for each flight is calculated. Similar to the full trajectory count analysis, 40 tests are done and the same 

determination of statistical significance is reached in all cases: the counts of extra trajectories in a reduced scenario 

are lower overall than in the full intent scenario. In these tests, the p-values are all less than 10
-4

 and the Student’s 

paired t-statistic values are compared to the results for total trajectory counts. The results show that, even after 

accounting for an increase in trajectory generation from increased issuance of clearances, the effect of improved 

intent on trajectory generation is significant. 

 

2. Trajectory Accuracy 

To quantify the effect of improved intent entry on the accuracy of predicted trajectories, the IBST is applied to 

the trajectories and simulated track data. The resulting trajectory error metrics are compiled and presented here. 

First, the average of absolute cross track error values (denoted as AACTE) is calculated for each flight in a given 

scenario, taking into account all desired sampled points for that flight. The average of this value is then calculated 

over all flights in the scenario and presented in Table 3 to illustrate the general trend in accuracy between scenarios. 

The same process is used to compile average absolute along track error (AAATE) in NM, average absolute vertical 

error (AAVE) in feet, and average horizontal error (AHE), which is unsigned and expressed in NM. The average 

values by scenario for these four trajectory error metrics are presented in Table 3. The scenarios are grouped by 

ARTCC, Year, and Intent Level. 

 

Table 3. Average Error Metrics by Scenario. 

ARTCC Year Intent 
Avg AACTE 

(NM) 

Avg AAATE 

(NM) 

Avg AAVE 

(ft) 

Avg AHE 

(NM) 

ZAU 

2018 

FL 0.030 0.143 87 0.155 

HI 0.062 0.169 97 0.205 

MD 0.106 0.203 111 0.272 

LO 0.157 0.237 127 0.343 

NN 0.208 0.244 143 0.388 

2025 

FL 0.028 0.140 87 0.151 

HI 0.061 0.176 100 0.211 

MD 0.112 0.203 116 0.276 

LO 0.160 0.249 132 0.354 

NN 0.227 0.260 147 0.415 
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ARTCC Year Intent 
Avg AACTE 

(NM) 

Avg AAATE 

(NM) 

Avg AAVE 

(ft) 

Avg AHE 

(NM) 

ZDV 

2018 

FL 0.021 0.044 13 0.049 

HI 0.046 0.063 17 0.089 

MD 0.075 0.074 19 0.124 

LO 0.112 0.093 23 0.171 

NN 0.132 0.096 28 0.190 

2025 

FL 0.021 0.042 15 0.050 

HI 0.058 0.071 19 0.106 

MD 0.076 0.078 21 0.128 

LO 0.107 0.088 28 0.164 

NN 0.136 0.103 32 0.199 

ZLA 

2018 

FL 0.026 0.088 52 0.098 

HI 0.053 0.123 61 0.145 

MD 0.105 0.161 72 0.227 

LO 0.157 0.194 79 0.283 

NN 0.227 0.235 97 0.367 

2025 

FL 0.028 0.093 55 0.103 

HI 0.079 0.141 69 0.192 

MD 0.160 0.194 77 0.301 

LO 0.216 0.230 95 0.378 

NN 0.312 0.296 116 0.500 

ZMA 

2018 

FL 0.022 0.128 74 0.124 

HI 0.039 0.155 86 0.159 

MD 0.071 0.178 103 0.210 

LO 0.097 0.200 116 0.246 

NN 0.126 0.205 132 0.273 

2025 

FL 0.023 0.139 74 0.133 

HI 0.055 0.162 87 0.180 

MD 0.073 0.183 104 0.215 

LO 0.113 0.201 121 0.263 

NN 0.166 0.225 142 0.325 

ZNY 

2018 

FL 0.036 0.234 88 0.220 

HI 0.072 0.279 102 0.286 

MD 0.090 0.308 108 0.324 

LO 0.134 0.327 127 0.379 

NN 0.169 0.348 136 0.420 

2025 

FL 0.039 0.234 94 0.226 

HI 0.061 0.282 109 0.283 

MD 0.097 0.295 114 0.323 

LO 0.139 0.349 132 0.400 

NN 0.176 0.368 146 0.440 

 

In Table 3 there are clear trends of trajectory accuracy increasing (error values decreasing) with improved intent. 

To verify that this effect is statistically significant, a paired t-test is applied to the data. Each of the four reduced 

intent scenarios is compared against the corresponding full intent scenario. The same flights are present in all five 

scenarios for a specified Year and ARTCC, and the average trajectory error for each flight in a reduced intent 

scenario is compared to the average error for the same flight in the full intent scenario. Four paired t-tests (one each 

for AACTE, AAATE, AAVE, and AHE) are done for each of the four reduced intent scenarios in a given ARTCC 
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and Year, for a total of 160 tests. The same conclusion is reached, that trajectory errors are lower overall in the full 

intent scenario than in the reduced intent scenarios. This difference is statistically significant in all comparisons, 

with all p-values less than 10
-3

. The technical note appendices contain the difference in means and Student’s paired 

t-statistic for each comparison. 

A different analysis approach is to consider the trajectory errors at a specific amount of time into the future, or 

look ahead time. This allows for evaluation of the trajectory predictor performance trend with look ahead time, and 

how this trend is affected by improved intent. The average absolute cross track error for a given look ahead time and 

all sampled points is calculated for 0, 300, 600, 900, and 1200 second look ahead times (every 5 minutes) and 

presented in Figure 3 for the set of ZAU (2018 and 2025) scenarios. The legend lists the scenarios in the same order 

in which they appear in the graphs. 

 

 
Figure 3. Trajectory Error vs. Look Ahead Time for ZAU. 

 

From Figure 3 it is observed that an increase in the level of intent entry corresponds to a decrease in average 

absolute cross track error at every look ahead time for the ten scenarios shown. In addition, the benefit from 

increased intent entry is more pronounced at longer look ahead times. Similar graphs for vertical and along track 

errors are located in the technical note appendices. It is noted that the relative differences are smaller for vertical 

error, and there is a slight inconsistency in the pattern for along track error. 

B. Conflict Probe Alert Performance 

Conflict alerts generated by the automation are collected for each simulated scenario. Alert addition, 

modification, and deletion events are grouped into notification sets using CPAT tools with specially designed logic. 

These notification sets are analyzed for overall count, alert duration, and predicted warning time to demonstrate 

benefits from improved intent entry. The count of distinct alert notifications is presented in Figure 4.  
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Figure 4. Alert Count vs. Intent Level. 

 

From Figure 4, the trend in each center is a consistent decrease with increased intent level, regardless of traffic 

year. These trends differ across the various centers. In particular, ZDV exhibits slightly different behavior, although 

the counts do follow the general trend of decreasing with increased intent level. These types of differences may be 

investigated in future studies. 

Due to open clearances in reduced intent scenarios, it is expected that a significant number of alerts will not be 

removed upon issuing an amendment, whereas with full intent, the majority are successfully resolved and the alerts 

deleted. Alerts with duration greater than 60 seconds are depicted in Figure 5, which provides the distribution of 

alert duration in one minute intervals. Since the resolution algorithm attempts to resolve alerts every minute, these 

can be interpreted as alerts that are not deleted at the time an amendment is entered. The percentage of problematic 

events over all events allows for a relative measure of performance between the scenarios. It is expected that 

improving the ground automation will diminish this percentage and it is hypothesized here that providing better 

intent information will improve the related automation functions. The metric ‘percent of alerts with long duration’ 

was computed for all scenarios and aggregate percentages are, from most intent to least intent provided: 15.6%, 

21.5%, 26.3%, 28.9%, and 34.0%. These data are further detailed by partitioning the event durations into increments 

of one minute. Figure 5 illustrates the metric over the five intent levels for ZAU with 2018 traffic and provides 

evidence that as intent is increased, the percentage of problematic events decreases. The other scenarios show a 

similar relative pattern and are included in the technical note appendices. 
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Figure 5. Percent of Alerts with Duration Exceeding One Minute. 

 

Another result of inaccurate trajectories from reduced intent amendments is an increase in the frequency of late 

notification of alerts. One factor that contributes to this increase is a short problem detection look ahead during the 

first off-leg of a vector maneuver or the level segment of a step altitude maneuver. For instance, if a modeled 

segment length has shorter duration than the controller's true intention, potential conflicts may only be alerted after a 

reconformance trajectory extending the off-leg or level segment is built, and accordingly these alerts may have a 

relatively small warning time. The first quartile of the predicted warning time is a valuable metric to describe how 

the lower tail of the distribution is affected by a change.  

To demonstrate how the predicted warning time distribution is affected, Table 4 presents data from ZAU, 

grouped by intent level and year. Count is the number of alerts generated, and Percent of Alerts with Duration > 1 

min. represents the aggregated percentages from the previous histograms. Q1 of Predicted Warning Time is the 25
th

 

percentile of the warning times predicted by the alerts (predicted conflict start time – notification start time) in 

seconds.  

 

Table 4: Alert Statistics for ZAU Scenarios. 

ARTCC Year Intent Count 

Q1 of Predicted 

Warning Time 

(seconds) 

Percent with 

Duration  

> 1 min. 

ZAU 

2018 

FL 1381 291 15.6 

HI 1494 282 21.5 

MD 1635 270 26.3 

LO 1829 240 28.9 

NN 2103 199 34 

2025 

FL 1812 292 14.3 

HI 1939 283 18.9 

MD 2116 273 24.1 

LO 2351 244 28.9 

NN 2713 208 33 

 

 

In general, the number of alerts created increases as the intent level decreases, as is expected, though there is one 

anomalous value for ZDV 2018 with low intent level. Q1 of the predicted warning time represents the minimum 
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predicted warning time for three-quarters of the data set, so decreasing this value represents a degradation of the 

minimum expected warning time predicted by the majority of alerts. This metric provides an alternate way of 

showing change in performance and supports the histograms, represented in aggregate form in the tables as Percent 

Alerts with Duration > 1 min. They support each other since one shows degradation in performance via a decrease in 

predicted warning time and the other shows this via an increasing percentage of problematic alerts. Similar tables for 

the other four centers are provided in the technical note. 

C. Statistical Model of Results 

The results of implementing the inferential statistical approach are presented here. A detailed multivariate 

regression model is used to fit the results of the designed experiment with the goal of determining which factors 

have a significant effect on the response variables and the size of these effects. Metrics from trajectory modeling and 

conflict alert performance are selected as response variables for the model. The first sub-section implements a 

statistical model and describes how the experiment data is fitted to the model, while the last discusses the findings 

from the model. 

 

1. Model Implementation 

Equation 1 illustrates the mathematical model for this experiment. It represents the full factorial design where all 

levels and factors are crossed, allowing all the interactions to be examined. This amounts to three main effects 

(single variables), three two-way interaction terms (double variables), and a quadratic term on the continuous 

variable, intent level. The constant or overall mean effect is represented as the “µ”term. 

 

Response:  

  Rijk = µ + Yi + Aj + Ik + Yi × Aj + Yi × Ik + Aj × Ik + Ik × Ik + εn(ijk)  

Where:  

         Yi = forecast years, i = 1, 2 (1) 

Aj = ARTCC, j = 1, 2, 3, 4, 5  

Ik = intent level, k = 1, 2, 3, 4, 5  

εn(ijk) = random error, n = 1, 2, … for all i, j, k  

 

The model assumes the random error εn(ijk) is approximately independently normally distributed with a zero mean 

and that the various factors are linearly additive as illustrated in Equation 1. 

Five response variables are evaluated and the same model in Equation 1 addresses all five separately. Thus, the 

term “Rijk” can refer to any one of the response variables. These values are calculated for each of the various runs 

(and associated factor levels) defined in Table 1. The term “Rijk,” then, is an estimate of the expected value for each 

of these five output functions. The response variables studied with this model are: average absolute horizontal 

trajectory error, average absolute vertical trajectory error, the count of trajectories with no associated clearance, the 

first quartile of predicted warning time, and the count of alerts with duration greater than one minute. 

The experimental design coded in Equation 1 and presented in Section II.A.4 is a full factorial design
8
, which 

includes all possible combinations of factor levels in the experiment. It is expensive in terms of runs required but 

offers several advantages, especially early in the study of a process. In this study, the quantity of runs is relatively 

inexpensive because a fast-time simulation model is employed. Factorial designs can be used to reveal the 

interaction effects of the factors under study and they are significantly more efficient than running multiple 

experiments for one factor at a time. The combinations of factor levels provide replications for evaluation of the 

individual factors, when some factors or factor combinations are removed from the experiment. The full factorial 

experiment is implemented, results from the 50 experimental runs are collected, and the model is fit to the calculated 

response data. 

 

2. Model Findings 

The fitted model is summarized graphically in Figure 6, where five leverage plots illustrate the actual and 

modeled values for each of the five responses. If the model could perfectly capture all the observed variation in the 

system, the actual measured response mean plotted on the y-axis in the figures and the coincident modeled version 

on the x-axis would fall on a diagonal line perfectly. The term “Rsq” in the plots is the coefficient of determination 
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of the model.
*4

This term provides a quantification of how well the model captures the observed variation in the 

system under study. For the five response variables under study in this experiment, the R
2
 ranged from 0.97 to 1.00. 

In practical terms, this means that the model defined in Equation 1 captured from 97 to 100 percent of the variation 

in the actual system under study. It is clear for all five responses that the model captures the trend and a high 

percentage of the variation. 

 

 

 

 

 
Figure 6. Leverage Plots per Response. 

                                                           
*
 From Ref. 4, the R

2
 is the coefficient of determination and is equal to the ratio of the sum of squares of the model 

divided by the sum of squares of the total variation. The total variation equals the modeled variation plus the error in 

the model (estimated by calculating the difference between model and observed values). 
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Tables 5 through 9 list the effect tests for the various factor level combinations of the experiment. The intent 

level is a continuous factor that may have non-linear effects while the others all represent fixed effects. The column 

labeled “Source” defines the particular effect produced from the combinations of factors listed. The column labeled 

“DF” is the degrees of freedom for the particular factor combination. The column labeled “Sum of Squares” is 

calculated by summing the squared differences of the observations minus the mean. The column labeled “F Ratio” is 

the test statistic produced by model mean square divided by the error mean square. The column labeled “p-value” is 

the probability that the test statistic is not significant. A p-value that is less than 0.05 is marked by an asterisk to 

indicate it provides evidence that the particular factor is statistically significant. 

 

Table 5. Model Effect Tests for Average Horizontal Error. 

 

Source 

 

DF 

Sum of 

Squares 

 

F Ratio 

 

p-Value 

Intent% 1 0.12746576 832.8155 <.0001* 

ARTCC 4 0.11483390 187.5709 <.0001* 

Traffic Year 1 0.00651133 42.5427 <.0001* 

Intent%*ARTCC 4 0.02748042 44.8868 <.0001* 

Intent%*Traffic Year 1 0.00242900 15.8702 0.0004* 

ARTCC*Traffic Year 4 0.00760976 12.4299 <.0001* 

Intent%*Intent% 1 0.00000131 0.0086 0.9267 

 

Table 6. Model Effect Tests for Average Absolute Vertical Error. 

 

Source 

 

DF 

Sum of 

Squares 

 

F Ratio 

 

P-Value 

Intent% 1 6058.225 1109.408 <.0001* 

ARTCC 4 30930.359 1416.025 <.0001* 

Traffic Year 1 371.661 68.0601 <.0001* 

Intent%*ARTCC 4 1755.926 80.3882 <.0001* 

Intent%*Traffic Year 1 72.955 13.3599 0.0009* 

ARTCC*Traffic Year 4 103.784 4.7513 0.0039* 

Intent%*Intent% 1 70.119 12.8405 0.0011* 

 
Table 7. Model Effect Tests for Response Variable TrajNoClr. 

 

Source 

 

DF 

Sum of 

Squares 

 

F Ratio 

 

P-Value 

Intent% 1 1.7607103 2317.748 <.0001* 

ARTCC 4 0.0991183 32.6191 <.0001* 

Traffic Year 1 0.0360800 47.4946 <.0001* 

Intent%*ARTCC 4 0.1171211 38.5437 <.0001* 

Intent%*Traffic Year 1 0.0158811 20.9054 <.0001* 

ARTCC*Traffic Year 4 0.0112091 3.6888 0.0137* 

Intent%*Intent% 1 0.0037736 4.9675 0.0328* 

 

Table 8. Model Effect Tests for Response Variable Q1WT. 

 

Source 

 

DF 

Sum of 

Squares 

 

F Ratio 

 

P-Value 

Intent% 1 10432.901 285.4311 <.0001* 

ARTCC 4 6417.190 43.8916 <.0001* 

Traffic Year 1 25.205 0.6896 0.4123 

Intent%*ARTCC 4 2834.403 19.3864 <.0001* 

Intent%*Traffic Year 1 45.901 1.2558 0.2705 

ARTCC*Traffic Year 4 145.833 0.9974 0.4228 

Intent%*Intent% 1 1477.125 40.4123 <.0001* 
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Table 9. Model Effect Tests for Response Variable DurationCount. 

 

Source 

 

DF 

Sum of 

Squares 

 

F Ratio 

 

P-Value 

Intent% 1 480592.08 905.5296 <.0001* 

ARTCC 4 109485.04 51.5728 <.0001* 

Traffic Year 1 164393.78 309.7501 <.0001* 

Intent%*ARTCC 4 51098.96 24.0701 <.0001* 

Intent%*Traffic Year 1 31612.84 59.5648 <.0001* 

ARTCC*Traffic Year 4 6461.92 3.0439 0.0306* 

Intent%*Intent% 1 24182.86 45.5652 <.0001* 

 

The results in Table 5 through Table 9 indicate that all of the main factors had a statistically significant effect 

according to the fitted model, with the exception of traffic year (and its possible interactions) on predicted warning 

time. Furthermore, the effect of intent level is found to be non-linear for all response variables, with the exception of 

horizontal error, for which intent has a fixed, linear effect. 

The model assumes that the unattributed variation or error in the model, referred to as random error, εn(ijk) in 

Equation 1 is approximately normally distributed. An additional validation of the model is to test the residuals for 

normality. In Ref. 12 these residual errors are presented for each of the five response variables in histograms 

overlaid with fitted normal distribution density lines, box plots, and normal probability plots for each response 

variable. The histograms and box plots illustrate that the distributions are fairly symmetric and centered at zero as 

expected if normally distributed. The normal probability plot illustrates for each response that the model errors fall 

along the diagonal probability line, indicating that each is at least approximately normally distributed and supporting 

the validity of the model. 

The experimental results produce a statistical model with coefficient estimates that are summarized in Table 10. 

This model allows us to draw conclusions on the relationships and net effects of the various factors under study.  

 

Table 10. Summary of Model Coefficient Estimates. 

Source 
Avg Horz Err 

(NM) 

Avg Abs 

Vert Error 

(ft) 

Trajectory 

(No Clr.) 

Count 

Duration 

Count 

Q1 of 

Warning 

Time (s) 

Intercept 0.331 104.47 1.7937 488.27 251.476 

Intent% -0.002 -0.44 -0.0075 -3.92 0.578 

ARTCC[ZAU] 0.043 29.28 0.0434 123.52 -17.47 

ARTCC[ZMA] -0.028 18.07 -0.0127 -61.88 0.48 

ARTCC[ZNY] 0.096 28.10 0.0284 -45.28 -14.07 

ARTCC[ZLA] -0.006 -11.58 0.0576 9.52 3.33 

ARTCC[ZDV] -0.105 -63.86 -0.1168 -25.88 27.73 

Traffic Year[25-18] 0.0228 5.45 0.0537 114.68 -1.42 

(Intent%-50)*ARTCC[ZAU] -0.000 -0.11 -0.005 -0.94 0.26 

(Intent%-50)*ARTCC[ZMA] 0.001 -0.16 0.0004 0.98 -0.25 

(Intent%-50)*ARTCC[ZNY] 0.000 -0.02 0.0005 0.46 0.22 

(Intent%-50)*ARTCC[ZLA] -0.001 -0.03 -0.0023 -1.23 -0.01 

(Intent%-50)*ARTCC[ZDV] 0.001 0.32 0.0019 0.73 -0.21 

(Intent%-50)*Traffic Year[25-18] -0.000 -0.07 -0.0010 -1.42 0.05 

ARTCC[ZAU]*Traffic Year[25-18] -0.014 -2.24 -0.0301 -14.68 4.97 

ARTCC[ZMA]*Traffic Year[25-18] -0.002 -1.67 -0.0036 4.12 -3.48 

ARTCC[ZNY]*Traffic Year[25-18] -0.014 1.50 -0.0274 -32.88 2.02 

ARTCC[ZLA]*Traffic Year[25-18] 0.048 4.98 0.0523 34.52 -4.13 

ARTCC[ZDV]*Traffic Year[25-18] -0.018 -2.57 0.0089 8.92 0.62 

(Intent%-50)*(Intent%-50) 0.000 0.00 0.0000 0.02 -0.01 

 

The results in Table 10 can be interpreted by comparing the size of the effects to the intercept, which is the mean 

response value over all levels. For every one percent increase in intent entered, the average horizontal error 

decreases by 0.002NM and average absolute vertical error by -0.44 ft. The number of trajectories per flight 
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decreases by 0.0075 for every percent increase in intent entry, compared to the 1.7937 overall average. The count of 

alerts with duration greater than one minute decreases by roughly 3.92 on average per one percent increase. This is 

compared to the intercept value of 488 total long duration alerts. The first quartile of predicted warning time 

increases by 0.578 seconds for every increase of one percent intent entry. Comparing no intent entry (0%) to full 

intent entry (100%), therefore, the first quartile increases by roughly one minute. Likewise, the horizontal error 

decreases by 0.2NM, or 61%; vertical error decreases by 44 ft, or roughly 42% of the general average. The trajectory 

count per flight decreases by 0.7 from minimum to maximum intent entry, which is 42%. And the count of alerts 

with long duration decreases by 392, or 80% of the intercept value. 

The JMP® commercial software tool from 

SAS provides an interactive model calculator 

called the predictor profiler that allows the 

examination of the effects of the various factors 

of the model. Figure 7 presents the predictor 

profile plot of the model results. The general 

trend is that year has a negligible effect on all 

responses except the count of alerts with long 

duration. The choice of ARTCC has the largest 

effect on the average of the absolute vertical 

errors. Increasing the intent level also displays 

desirable effects in the model: average 

horizontal and vertical error decrease, the count 

of trajectories with no associated clearance 

decreases, the count of alerts with long duration 

decreases, and the predicted warning time 

increases. These trends show that the model 

agrees with the hypothesis that increased intent 

in the system produces a positive effect. 

The slopes of the plotted lines in Figure 7 

indicate the magnitude and direction of each 

factor’s effect on the model. The curvature in 

the intent factor indicates its non-linear effects 

which are stronger at low intent levels. The y-

axis plots the response variable estimates from 

the model and the decimal numbers on each y-

axis represents the modeled response variable at 

the levels specified in the figures. The setting 

chosen for the profiler graphics are the ZDV 

ARTCC, at full (100%) intent for 2018. ZDV is 

chosen because it demonstrates the greatest 

positive benefits. 

IV. Conclusion 

CRA is envisioned as an advanced decision support tool for air traffic control deployed within the NextGen TBO 

initiatives. It predicts future conflicts between aircraft and proposes ranked resolution options, supporting increased 

use of “closed-loop” clearances by facilitating the entry of controller-selected resolutions. Contrasted with the 

methods used in today’s operations, where amendments are typically issued via voice and are often unknown to the 

ground automation system, this improved entry of amendments expands the information available to the automation 

regarding future intent. It is hypothesized that this additional information will increase the accuracy of ground-based 

trajectory modeling and improve conflict probe alert performance. 

This is one of a series of studies to estimate a number of potential benefits of CRA. The objective of this study is 

to investigate the benefits of improved trajectory modeling and conflict probe performance due to increased entry of 

controller intent, using a fast-time simulation methodology that involves a CRA prototype and ERAM-like modeling 

environment. This study utilized a sound methodology utilizing several powerful tools and platforms including fast-

time simulation airspace and ATC software, both internally developed and commercial off-the-shelf statistical and 

graphical platforms, and advanced multi-regression modeling to synthesize the results and estimate the net effects. 

Figure 7. Predictor Profiler for ZDV 2018. 
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Overall, a performance improvement is observed in both trajectory modeling and conflict probe alerts with 

increasing levels of intent entry. Almost 45,000 flights over 240 hours are simulated and the output data is fit to a 

statistical model. The model fits the data closely, capturing between 97 and 100% of the variation in the data for 

different response variables, and indicates a strong non-linear effect from the parameter that reflects how completely 

controller intent is entered to the ground automation- the size of the effect is highest at lower levels of intent entry. 

The results indicate a potential improvement in trajectory modeling: a 61% decrease in the overall average 

horizontal error and a 42% decrease in the overall average vertical error when comparing scenarios that simulated 

the least amount of controller intent entry to scenarios with complete entry of full clearances. In addition, the 

number of trajectories generated that do not coincide with a flight plan amendment decrease by 42% overall between 

these scenarios, indicating that the trajectories generated are more stable and that less reconformance rebuilds are 

necessary with more complete entry of controller intent. 

These improvements in trajectory prediction and more accurate trajectories lead to better performance of the 

conflict probe. Two metrics that are used to demonstrate conflict alert performance are the first quartile of predicted 

warning time and the count of alerts with duration greater than one minute. Inaccurate trajectories result in an 

increase in late notification of alerts, in other words, short warning time before a conflict. The authors consider the 

distribution of predicted warning time, or difference between predicted conflict start time and first time of 

notification for each conflict. The first quartile (25th percentile) of the predicted warning times of the alerts in 

seconds is a valuable metric to describe how the lower tail of the distribution is affected. From the statistical model, 

the first quartile of predicted warning time increases by 58 seconds overall when increasing full entry of 2-part 

clearances to the ground automation from 0 to 100%. The count of alerts with duration greater than one minute is 

important because with missing intent, some alerts will not be removed upon issuing an amendment. Alerts that are 

not deleted at the time an amendment is entered can be identified in this study by an alert duration greater than one 

minute, and represent problematic events. The count of these alerts decreases by an average of 80% over all 

experimental runs when increasing full entry of 2-part clearances from 0 through 100%. 

To apply these results in estimating the impact of CRA, the percent of intent entry in current operations and 

future operations with CRA needs to be calculated.  The percent of intent entry is related to the level of usage of 

CRA by ATC, and this can be estimated in a human-in-the-loop simulation or by surveying subject matter experts. 

The full technical note documenting this study
12

 presents detailed flight examples to demonstrate how the 

trajectory modeling and conflict probe alert performance is affected by the level of intent entry. Each example 

compares an instance from a reduced intent scenario, in which intent is not sent to the ground automation system, to 

the same time in the associated full intent scenario, with all clearances fully entered. The FAA FliteViz4D 

visualization tool
1
 is used to explore the scenario data and produce graphics. The examples capture a wide array of 

benefit mechanisms from improved intent entry by demonstrating that in the simulated scenarios, when 2-leg 

maneuvers are not entered into the ground automation system, the modeled trajectories are incorrect and that this 

lack of correct intent information leads to false alerts, late or missed alerts, and unnecessary maneuvers. When the 

full clearances are entered, the trajectories are modeled correctly and these events are averted. 

In summary, this study presents a comprehensive simulation of improved intent entry and evaluates the impact 

that Conflict Resolution Advisories could have on the performance of the ground automation with respect to 

trajectory modeling and conflict alert generation. The authors employed metrics that reflect important performance 

aspects of trajectory modeling and conflict probe alerting. The results indicate a significant impact and definite trend 

of performance improvement with increasing entry of full 2-part clearances. 
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